• Privacy Policy
Monday, September 25, 2023
Data Centre & Network News
  • Data Centres
  • Networking
  • Infrastructure
  • Data
  • Magazine
  • Media Kit
  • Events
  • SUBSCRIBE
  • Contact
No Result
View All Result
  • Data Centres
  • Networking
  • Infrastructure
  • Data
  • Magazine
  • Media Kit
  • Events
  • SUBSCRIBE
  • Contact
No Result
View All Result
Data Centre & Network News
No Result
View All Result

Identifying and evaluating the real embodied carbon cost of a data centre

Beatrice by Beatrice
August 1, 2022
in Energy Management
9 0
0
Share on FacebookShare on Twitter

By Ed Ansett, Founder and Chairman of i3 Solutions Group

Global emissions from new-build projects are at record levels. Consequently, construction is moving further away from, not closer to, net zero buildings. With the current focusing very much on the carbon footprint of facility operations, a new white paper presents the case for taking a ‘Whole Life Carbon’ approach when assessing the data centre carbon impact.

According to the United Nations Environment Programme (UNEP) the carbon cost of building is rising. The UNEP Global Alliance for Buildings and Construction (GlobalABC) global status report highlighted two concerning trends: firstly, that ‘CO2 emissions from the building sector are the highest ever recorded…’ and, secondly, ‘new GlobalABC tracker finds the sector is losing momentum toward decarbonisation.’

Embodied carbon costs are mainly incurred at the construction stage of any building project. However, these costs can go further than simply the carbon price of materials – including concrete and steel – and their use. And while it is true that not all buildings are the same in embodied carbon terms, in almost all cases these emissions (created at the beginning of the building lifecycle) simply cannot be reduced over time.

Since this is often, and in some cases, especially true in data centres, it is incumbent to consider the best ways for the sector to identify, consider and evaluate the real embodied carbon cost of infrastructure-dense and energy-intensive buildings.

Technical environments and energy-intensive buildings such as data centres differ greatly from other forms of commercial real estate, such as offices, warehouses and retail developments. Focusing on the data centre, let’s take for example a new build 50MW facility. It is clear that in order to meet its design objective it’s going to require a great deal more power and cooling infrastructure plant and equipment to function in comparison with other forms of buildings.

Embodied carbon in data centres

Embodied carbon in a data centre comprises all those emissions not attributed to operations, as well as the use of energy and water in its day to day running. It’s a long list which includes emissions associated with resource extraction, manufacturing, and transportation, as well as those created during the installation of materials and components used to construct the built environment.

Embodied carbon also includes the lifecycle emissions from the ongoing use of all of the above, from maintenance, repair and replacements to end-of-life activities such as deconstruction and demolition, transportation, waste processing and disposal. These lifecycle emissions must be considered when accounting for the total carbon cost.

The complexity of mission critical facilities makes it more important than ever to have a comprehensive process to consider and address all sources of embodied carbon emissions early in design and equipment procurement. Only by early and detailed assessment can operators inform on the best actions which can contribute to immediate embodied carbon reductions.

Calculating whole life carbon

Boundaries to measure the embodied carbon and emissions of a building at different points in the construction and operating lifecycle are Cradle to Gate; Cradle to Site; Cradle to Use and Cradle to Grave carbon calculations, where ‘cradle’ is referenced as the earth or ground from which raw materials are extracted.

For data centres, these higher levels of infrastructure are equipment-related, additional, and important considerations because in embodied carbon terms they will be categorised under Scope three of the GHG Protocol Standards – also referred to as Value-Chain emissions.

Much of the Scope three emissions will be produced by upstream activities that include and cover materials for construction. However, especially important for data centres, is that they also include the carbon cost for ongoing maintenance and replacement of the facility plant and equipment.

That brings us to whole of life calculations which will combine embodied and operational carbon.

Combining embodied and operational emissions to analyse the entire lifecycle of a building throughout its useful life and beyond is the Whole Life Carbon approach. It ensures that the embodied carbon (CO2 emissions) together with embodied carbon of materials, components and construction activities are calculated and available to allow comparisons between different design and construction approaches.

Data centre sustainability is more than simply operational efficiency

The great efforts to improve efficiency and reduce energy use – as measured through improvements in PUE – have slowed operational carbon emissions even as demand and the scale of facilities has surged. But reducing operational energy of the facility is measured over time and such reductions are not accounted for until five, 10 or 30 years into the future.

However, embodied carbon is mostly spent up-front as the building is constructed; there is, therefore a compelling reason to include embodied carbon within all analyses and data centre design decisions. A ‘Whole Life’ carbon approach that considers both embodied and the operational emissions, provides the opportunity to contribute positively to global goals to reduce emissions of greenhouse gases – and will save financial costs.

Tags: carbonconstructionData Centreemissionsenergyi3 Solutionsnet zero
Share4Tweet2Share1

Related Posts

Considerations and modelling of on-premise hydrogen production in data centres for greenhouse gas abatement – a viable option?

Is on-premise hydrogen production for greenhouse gas abatement a viable option?

September 12, 2023
59
AirTrunk

Hyperscale data centres key to driving APJ’s energy transition

September 12, 2023
52
Data centres’ net zero plans blown off track by the energy crisis

Data centres’ net zero plans blown off track by the energy crisis

September 7, 2023
94
Powering a Clean Energy Future Report

AirTrunk releases report on powering a clean energy future  

August 17, 2023
60
Consult Red celebrates 20 years of innovation

Consult Red celebrates 20 years of innovation

July 28, 2023
48
Vertiv

Vertiv’s guidance on data centres during extreme heat

July 21, 2023
73
Next Post
Scope 3 emissions: the time for bold leadership is now

Scope 3 emissions: the time for bold leadership is now

Smart power management in buildings and data centres

Smart power management in buildings and data centres

KKR to acquire 20% stake in Singtel’s regional data centre business
Data Centres

KKR to acquire stakes in Singtel’s regional data centre business

September 25, 2023
34
Alfa Laval Spearheading Drive for More Sustainable Data Centres
Data Centres

Alfa Laval spearheading drive for more sustainable data centres

September 25, 2023
34

Head office & Accounts:
Suite 14, 6-8 Revenge Road, Lordswood
Kent ME5 8UD
T: +44 (0)1634 673163
F: +44 (0)1634 673173

Data Centres

KKR to acquire stakes in Singtel’s regional data centre business

September 25, 2023
34
Data Centres

Alfa Laval spearheading drive for more sustainable data centres

September 25, 2023
34
  • Privacy Policy

© 2023 All Things Media Ltd.

No Result
View All Result
  • Data Centres
  • Networking
  • Infrastructure
  • Data
  • Magazine
  • Media Kit
  • Events
  • SUBSCRIBE
  • Contact

© 2023 All Things Media Ltd.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.